

Welcome to dask-ndfilters’s documentation!

Contents:

	Readme

	Installation

	Usage

	API

	Contributing

	Credits

Indices and tables

	Index

	Module Index

	Search Page

dask-ndfilters

[image: PyPI]
 [https://pypi.python.org/pypi/dask-ndfilters][image: conda-forge]
 [https://anaconda.org/conda-forge/dask-ndfilters][image: Travis CI]
 [https://travis-ci.org/dask-image/dask-ndfilters][image: Read the Docs]
 [https://dask-ndfilters.readthedocs.io/en/latest/?badge=latest][image: Coveralls]
 [https://coveralls.io/github/dask-image/dask-ndfilters][image: License]
A library for using N-D filters with Dask Arrays

	Free software: BSD 3-Clause

	Documentation: https://dask-ndfilters.readthedocs.io.

Features

	TODO

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the nanshe-org/nanshe-cookiecutter [https://github.com/nanshe-org/nanshe-cookiecutter] project template.

Installation

Stable release

To install dask-ndfilters, run this command in your terminal:

$ pip install dask-ndfilters

This is the preferred method to install dask-ndfilters, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for dask-ndfilters can be downloaded from the Github repo [https://github.com/dask-image/dask-ndfilters].

You can either clone the public repository:

$ git clone git://github.com/dask-image/dask-ndfilters

Or download the tarball [https://github.com/dask-image/dask-ndfilters/tarball/master]:

$ curl -OL https://github.com/dask-image/dask-ndfilters/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use dask-ndfilters in a project:

import dask_ndfilters

API

	dask_ndfilters package

dask_ndfilters package

	
dask_ndfilters.convolve(input, weights, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.convolve”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional convolution.

The array is convolved with the given kernel.

	Parameters:	
	input (array_like) – Input array to filter.

	weights (array_like) – Array of weights, same number of dimensions as input

	mode ({'reflect','constant','nearest','mirror', 'wrap'}, optional) – the mode parameter determines how the array borders are
handled. For ‘constant’ mode, values beyond borders are set to be
cval. Default is ‘reflect’.

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	origin (array_like, optional) – The origin parameter controls the placement of the filter,
relative to the centre of the current element of the input.
Default of 0 is equivalent to (0,)*input.ndim.

	Returns:	result – The result of convolution of input with weights.

	Return type:	ndarray

See also

	correlate()

	Correlate an image with a kernel.

Notes

Each value in result is , where
W is the weights kernel,
j is the n-D spatial index over ,
I is the input and k is the coordinate of the center of
W, specified by origin in the input parameters.

Examples

Perhaps the simplest case to understand is mode='constant', cval=0.0,
because in this case borders (i.e. where the weights kernel, centered
on any one value, extends beyond an edge of input.

>>> a = np.array([[1, 2, 0, 0],
... [5, 3, 0, 4],
... [0, 0, 0, 7],
... [9, 3, 0, 0]])
>>> k = np.array([[1,1,1],[1,1,0],[1,0,0]])
>>> from scipy import ndimage
>>> ndimage.convolve(a, k, mode='constant', cval=0.0)
array([[11, 10, 7, 4],
 [10, 3, 11, 11],
 [15, 12, 14, 7],
 [12, 3, 7, 0]])

Setting cval=1.0 is equivalent to padding the outer edge of input
with 1.0’s (and then extracting only the original region of the result).

>>> ndimage.convolve(a, k, mode='constant', cval=1.0)
array([[13, 11, 8, 7],
 [11, 3, 11, 14],
 [16, 12, 14, 10],
 [15, 6, 10, 5]])

With mode='reflect' (the default), outer values are reflected at the
edge of input to fill in missing values.

>>> b = np.array([[2, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> k = np.array([[0,1,0], [0,1,0], [0,1,0]])
>>> ndimage.convolve(b, k, mode='reflect')
array([[5, 0, 0],
 [3, 0, 0],
 [1, 0, 0]])

This includes diagonally at the corners.

>>> k = np.array([[1,0,0],[0,1,0],[0,0,1]])
>>> ndimage.convolve(b, k)
array([[4, 2, 0],
 [3, 2, 0],
 [1, 1, 0]])

With mode='nearest', the single nearest value in to an edge in
input is repeated as many times as needed to match the overlapping
weights.

>>> c = np.array([[2, 0, 1],
... [1, 0, 0],
... [0, 0, 0]])
>>> k = np.array([[0, 1, 0],
... [0, 1, 0],
... [0, 1, 0],
... [0, 1, 0],
... [0, 1, 0]])
>>> ndimage.convolve(c, k, mode='nearest')
array([[7, 0, 3],
 [5, 0, 2],
 [3, 0, 1]])

	
dask_ndfilters.correlate(input, weights, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.correlate”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional correlation.

The array is correlated with the given kernel.

	Parameters:	
	input (array-like) – input array to filter

	weights (ndarray) – array of weights, same number of dimensions as input

	mode ({'reflect','constant','nearest','mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	origin (scalar, optional) – The origin parameter controls the placement of the filter.
Default 0

See also

	convolve()

	Convolve an image with a kernel.

	
dask_ndfilters.gaussian_filter(input, sigma, order=0, mode='reflect', cval=0.0, truncate=4.0)

	Wrapped copy of “scipy.ndimage.filters.gaussian_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional Gaussian filter.

	Parameters:	
	input (array_like) – Input array to filter.

	sigma (scalar or sequence of scalars) – Standard deviation for Gaussian kernel. The standard
deviations of the Gaussian filter are given for each axis as a
sequence, or as a single number, in which case it is equal for
all axes.

	order ({0, 1, 2, 3} or sequence from same set, optional) – The order of the filter along each axis is given as a sequence
of integers, or as a single number. An order of 0 corresponds
to convolution with a Gaussian kernel. An order of 1, 2, or 3
corresponds to convolution with the first, second or third
derivatives of a Gaussian. Higher order derivatives are not
implemented

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	truncate (float) – Truncate the filter at this many standard deviations.
Default is 4.0.

	Returns:	gaussian_filter – Returned array of same shape as input.

	Return type:	ndarray

Notes

The multidimensional filter is implemented as a sequence of
one-dimensional convolution filters. The intermediate arrays are
stored in the same data type as the output. Therefore, for output
types with a limited precision, the results may be imprecise
because intermediate results may be stored with insufficient
precision.

Examples

>>> from scipy.ndimage import gaussian_filter
>>> a = np.arange(50, step=2).reshape((5,5))
>>> a
array([[0, 2, 4, 6, 8],
 [10, 12, 14, 16, 18],
 [20, 22, 24, 26, 28],
 [30, 32, 34, 36, 38],
 [40, 42, 44, 46, 48]])
>>> gaussian_filter(a, sigma=1)
array([[4, 6, 8, 9, 11],
 [10, 12, 14, 15, 17],
 [20, 22, 24, 25, 27],
 [29, 31, 33, 34, 36],
 [35, 37, 39, 40, 42]])

	
dask_ndfilters.gaussian_gradient_magnitude(input, sigma, mode='reflect', cval=0.0, truncate=4.0, **kwargs)

	Wrapped copy of “scipy.ndimage.filters.gaussian_gradient_magnitude”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional gradient magnitude using Gaussian derivatives.

	Parameters:	
	input (array_like) – Input array to filter.

	sigma (scalar or sequence of scalars) – The standard deviations of the Gaussian filter are given for
each axis as a sequence, or as a single number, in which case
it is equal for all axes..

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	keyword arguments will be passed to gaussian_filter() (Extra) –

	
dask_ndfilters.gaussian_laplace(input, sigma, mode='reflect', cval=0.0, truncate=4.0, **kwargs)

	Wrapped copy of “scipy.ndimage.filters.gaussian_laplace”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multidimensional Laplace filter using gaussian second derivatives.

	Parameters:	
	input (array_like) – Input array to filter.

	sigma (scalar or sequence of scalars) – The standard deviations of the Gaussian filter are given for
each axis as a sequence, or as a single number, in which case
it is equal for all axes.

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	keyword arguments will be passed to gaussian_filter() (Extra) –

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> ascent = misc.ascent()

>>> fig = plt.figure()
>>> plt.gray() # show the filtered result in grayscale
>>> ax1 = fig.add_subplot(121) # left side
>>> ax2 = fig.add_subplot(122) # right side

>>> result = ndimage.gaussian_laplace(ascent, sigma=1)
>>> ax1.imshow(result)

>>> result = ndimage.gaussian_laplace(ascent, sigma=3)
>>> ax2.imshow(result)
>>> plt.show()

	
dask_ndfilters.generic_filter(input, function, size=None, footprint=None, mode='reflect', cval=0.0, origin=0, extra_arguments=(), extra_keywords={})

	Wrapped copy of “scipy.ndimage.filters.generic_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculates a multi-dimensional filter using the given function.

At each element the provided function is called. The input values
within the filter footprint at that element are passed to the function
as a 1D array of double values.

	Parameters:	
	input (array_like) – Input array to filter.

	function (callable) – Function to apply at each element.

	size (scalar or tuple, optional) – See footprint, below

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2).

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	origin (scalar, optional) – The origin parameter controls the placement of the filter.
Default 0.0.

	extra_arguments (sequence, optional) – Sequence of extra positional arguments to pass to passed function

	extra_keywords (dict, optional) – dict of extra keyword arguments to pass to passed function

	
dask_ndfilters.laplace(input, mode='reflect', cval=0.0)

	Wrapped copy of “scipy.ndimage.filters.laplace”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

N-dimensional Laplace filter based on approximate second derivatives.

	Parameters:	
	input (array_like) – Input array to filter.

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> ascent = misc.ascent()
>>> result = ndimage.laplace(ascent)
>>> plt.gray() # show the filtered result in grayscale
>>> plt.imshow(result)

	
dask_ndfilters.maximum_filter(input, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.maximum_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculates a multi-dimensional maximum filter.

	Parameters:	
	input (array_like) – Input array to filter.

	size (scalar or tuple, optional) – See footprint, below

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2).

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	origin (scalar, optional) – The origin parameter controls the placement of the filter.
Default 0.0.

	
dask_ndfilters.median_filter(input, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.median_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculates a multidimensional median filter.

	Parameters:	
	input (array_like) – Input array to filter.

	size (scalar or tuple, optional) – See footprint, below

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2).

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	origin (scalar, optional) – The origin parameter controls the placement of the filter.
Default 0.0.

	Returns:	median_filter – Return of same shape as input.

	Return type:	ndarray

	
dask_ndfilters.minimum_filter(input, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.minimum_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculates a multi-dimensional minimum filter.

	Parameters:	
	input (array_like) – Input array to filter.

	size (scalar or tuple, optional) – See footprint, below

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2).

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	origin (scalar, optional) – The origin parameter controls the placement of the filter.
Default 0.0.

	
dask_ndfilters.percentile_filter(input, percentile, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.percentile_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculates a multi-dimensional percentile filter.

	Parameters:	
	input (array_like) – Input array to filter.

	percentile (scalar) – The percentile parameter may be less then zero, i.e.,
percentile = -20 equals percentile = 80

	size (scalar or tuple, optional) – See footprint, below

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2).

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	origin (scalar, optional) – The origin parameter controls the placement of the filter.
Default 0.0.

	
dask_ndfilters.prewitt(input, axis=-1, mode='reflect', cval=0.0)

	Wrapped copy of “scipy.ndimage.filters.prewitt”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a Prewitt filter.

	Parameters:	
	input (array_like) – Input array to filter.

	axis (int, optional) – The axis of input along which to calculate. Default is -1.

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> ascent = misc.ascent()
>>> result = ndimage.prewitt(ascent)
>>> plt.gray() # show the filtered result in grayscale
>>> plt.imshow(result)

	
dask_ndfilters.rank_filter(input, rank, size=None, footprint=None, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.rank_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculates a multi-dimensional rank filter.

	Parameters:	
	input (array_like) – Input array to filter.

	rank (int) – The rank parameter may be less then zero, i.e., rank = -1
indicates the largest element.

	size (scalar or tuple, optional) – See footprint, below

	footprint (array, optional) – Either size or footprint must be defined. size gives
the shape that is taken from the input array, at every element
position, to define the input to the filter function.
footprint is a boolean array that specifies (implicitly) a
shape, but also which of the elements within this shape will get
passed to the filter function. Thus size=(n,m) is equivalent
to footprint=np.ones((n,m)). We adjust size to the number
of dimensions of the input array, so that, if the input array is
shape (10,10,10), and size is 2, then the actual size used is
(2,2,2).

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	origin (scalar, optional) – The origin parameter controls the placement of the filter.
Default 0.0.

	
dask_ndfilters.sobel(input, axis=-1, mode='reflect', cval=0.0)

	Wrapped copy of “scipy.ndimage.filters.sobel”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Calculate a Sobel filter.

	Parameters:	
	input (array_like) – Input array to filter.

	axis (int, optional) – The axis of input along which to calculate. Default is -1.

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

Examples

>>> from scipy import ndimage, misc
>>> import matplotlib.pyplot as plt
>>> ascent = misc.ascent()
>>> result = ndimage.sobel(ascent)
>>> plt.gray() # show the filtered result in grayscale
>>> plt.imshow(result)

	
dask_ndfilters.uniform_filter(input, size=3, mode='reflect', cval=0.0, origin=0)

	Wrapped copy of “scipy.ndimage.filters.uniform_filter”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional uniform filter.

	Parameters:	
	input (array_like) – Input array to filter.

	size (int or sequence of ints, optional) – The sizes of the uniform filter are given for each axis as a
sequence, or as a single number, in which case the size is
equal for all axes.

	mode ({'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional) – The mode parameter determines how the array borders are
handled, where cval is the value when mode is equal to
‘constant’. Default is ‘reflect’

	cval (scalar, optional) – Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

	origin (scalar, optional) – The origin parameter controls the placement of the filter.
Default 0.0.

Notes

The multi-dimensional filter is implemented as a sequence of
one-dimensional uniform filters. The intermediate arrays are stored
in the same data type as the output. Therefore, for output types
with a limited precision, the results may be imprecise because
intermediate results may be stored with insufficient precision.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dask-image/dask-ndfilters/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

dask-ndfilters could always use more documentation, whether as part of the
official dask-ndfilters docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dask-image/dask-ndfilters/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up dask-ndfilters for local development.

	Fork the dask-ndfilters repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/dask-ndfilters.git

	Install your local copy into an environment. Assuming you have conda installed, this is how you set up your fork for local development (on Windows drop source). Replace “<some version>” with the Python version used for testing.:

$ conda create -n dask_ndfiltersenv python="<some version>"
$ source activate dask_ndfiltersenv
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions:

$ flake8 dask_ndfilters tests
$ python setup.py test or py.test

To get flake8, just conda install it into your environment.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5, and 3.6. Check
https://travis-ci.org/dask-image/dask-ndfilters/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_dask_ndfilters

Credits

Development Lead

	John Kirkham, Howard Hughes Medical Institute <kirkhamj@janelia.hhmi.org>

Contributors

None yet. Why not be the first?

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 dask_ndfilters	

Index

 C
 | D
 | G
 | L
 | M
 | P
 | R
 | S
 | U

C

 	
 	convolve() (in module dask_ndfilters)

 	
 	correlate() (in module dask_ndfilters)

D

 	
 	dask_ndfilters (module)

G

 	
 	gaussian_filter() (in module dask_ndfilters)

 	gaussian_gradient_magnitude() (in module dask_ndfilters)

 	
 	gaussian_laplace() (in module dask_ndfilters)

 	generic_filter() (in module dask_ndfilters)

L

 	
 	laplace() (in module dask_ndfilters)

M

 	
 	maximum_filter() (in module dask_ndfilters)

 	
 	median_filter() (in module dask_ndfilters)

 	minimum_filter() (in module dask_ndfilters)

P

 	
 	percentile_filter() (in module dask_ndfilters)

 	
 	prewitt() (in module dask_ndfilters)

R

 	
 	rank_filter() (in module dask_ndfilters)

S

 	
 	sobel() (in module dask_ndfilters)

U

 	
 	uniform_filter() (in module dask_ndfilters)

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to dask-ndfilters's documentation!

 		Readme

 		Features

 		Credits

 		Installation

 		Stable release

 		From sources

 		Usage

 		API

 		dask_ndfilters package

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

_static/up-pressed.png

_static/down.png

_static/up.png

